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Abstract

A statistical method trained and optimized to retrieve relative humidity (RH) profiles is
presented and evaluated with measurements from radiosoundings. The method makes
use of the microwave payload of the Megha-Tropiques plateform, namely the SAPHIR
sounder and the MADRAS imager. The approach, based on a Generalized Additive
Model (GAM), embeds both the physical and statistical characteritics of the inverse
problem in the training phase and no explicit thermodynamical constraint, such as a
temperature profile or an integrated water vapor content, is provided to the model at the
stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases
of scattering of the microwave radiation in the 18.7-183.31 GHz range covered by
the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme
and a SAPHIR-only scheme, to deal with the stop of data acquisition of MADRAS in
January 2013 for technical reasons. A comparison to retrievals based on the Multi-
Layer Perceptron (MLP) technique and on the Least Square-Support Vector Machines
(LS-SVM) shows equivalent performance over a large realistic set, promising low er-
rors (bias < 2.2 %) and scatters (correlation > 0.8) throughout the troposphere (150—
900 hPa). A comparison to radiosounding measurements performed during the inter-
national field experiment CINDY/DYNAMO/AMIE of winter 2011-2012 confirms these
results for the mid-tropospheric layers (correlation between 0.6 and 0.92), with an ex-
pected degradation of the quality of the estimates at the surface and top layers. Finally
a rapid insight of the large-scale RH field from Megha-Tropiques is discussed and com-
pared to ERA-Interim.

1 Introduction

The atmospheric water vapor is a key parameter of the climate system and the un-
derstanding of its variation under a climate evolution relies on a thorough documen-
tation of its horizontal and vertical distributions (Held and Soden, 2000; Roca et al.,
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2010; Sherwood et al., 2010). It is a major greenhouse gas, part of a strong positive
feedback that amplifies the warming caused by increases of greenhouse gases in the
atmosphere (Spencer and Braswell, 1997; Hall and Manabe, 2000; Held and Soden,
2006), and, because of its short life cycle compared to other species, its distribution
is mainly influenced by natural processes that occur at all scales, from the large scale
cells of the atmospheric circulation to the scale of the hydrometeor (e.g. Houze and
Betts, 1981; Pierrehumbert and Roca, 1998; Pierrehumbert et al., 2007).

While direct measurements by radiosondes are the most simple ways to look at the
vertical structure of the relative humidity (RH) field, the network of stations (permanents
or not) is inequally distributed between the two hemispheres and there is a clear gap of
data over the oceans (Durre et al., 2006). The climate record built by aggregating the
observations from the various operational sensors used worldwide (e.g. Vaisala, MEI-
SEl, IM-MK3, MODEM) requires regular intercomparison campaigns, such as those
organized by the World Meteorological Organization (Nash et al., 2005) and the devel-
opment of dedicated correction schemes in order to correct most of the observational
errors (such as the drying effect of the radiative heating on the Vaisala sensor or the in-
sensitivity of the MEISEI system under dry conditions). Quite recently Wang and Zhang
(2008) have summarized the systematic instrumental biases between several versions
of the Vaisala system that, if uncorrected, would affect analyses of the global moisture
field. An alternative is the fleet of space-borne radiometers with channels located in
spectral bands sensitive to the absorption by water vapor. Such instruments provide
a more global sight of the distribution of the water vapor field since the late 70’s, in
the thermal infrared part of the spectrum (in the 6.3 um band, e.g. on the METEOSAT
satellites of the European Organization of the Exploitation of Meteorological Satellites
agency -EUMETSAT-) and in the microwave range (near the 183.31 GHz absorption
line, e.g. on the Advanced Microwave Sounding Unit-B -AMSU-B- radiometer of the
National Oceanic and Atmospheric Administration -NOAA- satellites). These are how-
ever indirect estimations of the RH from the measured upwelling radiation and are thus
strongly linked to the constraints of the underlying inverse problem (RH = f(radiation)).

8985

| J1adeq uoissnosiq | Jaded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

©)
do

AMTD
7, 8983-9023, 2014

Relative humidity
profiling with
Megha-tropiques

R. G. Sivira et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/8983/2014/amtd-7-8983-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/8983/2014/amtd-7-8983-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The aim of this study is to explore the potential of the Megha-Tropiques mission,
operating since October 2011, to retrieve atmospheric RH profiles without explicitly
prescribing thermodynamical parameters. In fact, this work is also motivated by a de-
sire to explore the potential of a purely statistical methods in the following problem:
given a set of brightness temperatures (BTs) provided by a space-borne radiometer,
what is the vertical distribution (i.e. a profile) of RH and what are the expected limits
of such an approach? Many retrieval approaches exist but, to our knowledge, none
of them estimate the RH profile from a simple input dataset restricted to the BTs. In-
deed, most of the approaches are physically-based iterative techniques: a n dimen-
sional variational algorithm that converges to the least biased profile using also other
inputs as prior knowledge of the system under study (such as surface emissivity, tem-
perature profile and sometimes a prior water vapor profile for BT simulations). These
variational techniques are well established (Kuo et al., 1994; Cabrera-Mercadier and
Staelin, 1995; Rieder and Kirchengast, 1999; Blankenship et al., 2000; Liu and Weng,
2005) and it would be unnecessary to reinvent a similar algorithm. The focus here is
really on the microwave payload of the satellite, namely SAPHIR and MADRAS, both
dedicated to improve the documentation of the atmospheric water cycle, and not on
the choices of the relaxation scheme or the a priori constraints that could improve the
retrieval. The approach is to learn the relationship between the inputs (i.e. the BTs)
and the output (i.e. the RH at a specific atmospheric layer) directly from a training set
that implicitly contains all the relevant information such as the statistical distribution of
the atmospheric RH or the radiative transfer equation from the set of BTs.

In a previous paper, Brogniez et al. (2013) showed the expected improvements for
the estimation of the RH profiles thanks to the combination of those two instruments,
highlighting the gain of information for both ends of the troposphere when only a subset
of the channels of MADRAS are used combined to SAPHIR measurements. As in Brog-
niez et al. (2013), the retrieval technique is based on the Generalized Additive Model
(hereafter GAM, Hastie and Tibshirani, 1990) and its ability to model multi-variate and
non-linear relationships. The choice of GAM over other retrieval techniques is relatively
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subjective. So to ensure that the main patterns are independant from the choice of
the statistical model, a comparison against two other models is done. We consider
two machine learning regression algorithms as references for this purpose. The first
one is the Multi-Layer Perceptron (MLP) as defined by Rumelhart et al. (1986), gen-
erally considered as reference because it is the most common approach to develop
non-parametric and non-linear regression in various application domains. As shown in
Thiria et al. (1993) MLPs are able to model complex inverse functions in processing
noisy data. MLPs have been successfully applied in remote sensing application, with
or without prior information (e.g. Mallet et al., 1993; Cabrera-Mercadier and Staelin,
1995; Aires and Prigent, 2001; Karbou et al., 2005; Aires et al., 2010). The second one
is the Least Square-Support Vector Machines (LS-SVM) (Suykens et al., 2002), that
belongs to the family of kernel methods. LS-SVMs are models linear in their parame-
ters and their training process consists in a quadratic minimization under constraints.
These properties confer to them the ability to build models with high generalization ca-
pabilities by avoiding overfitting and controlling model complexity. Numerous analysis
involving real data in other areas (Balabin and Lomakina, 2011; Wun-Hua et al., 2006)
have shown that SVM-based techniques are comparable in efficiency to MLPs.

The description of the data at hand and of the context of the work are made in Sect. 2.
The three non-linear models, GAM, MLP and LS-SVM and their design for the study
are detailled in Sect. 3, while Sect. 4 is dedicated to the evaluation of the estimations
over a realistic dataset in order to have a large sample of evaluation. The application
to Megha-Tropiques measurements is discussed in Sect. 5 with a comparison to ra-
diosounding measurements in order to consider true data. Section 6 finally draws a
conclusion on the study and discuss the ongoing work.
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2 Data and context
2.1 Overview of the Megha-Tropiques mission

Megha-Tropiques is an Indo-French satellite that is dedicated to the observation of the
energy budget and of the water cycle within the tropical belt (+30° in latitude). The plat-
form carries four instruments: MADRAS, a microwave imager for the observation of rain
and clouds (Microwave Analysis and Detection of Rain and Atmospheric Structures),
SAPHIR, a microwave sounder of tropospheric RH (Sondeur Atmosphérique du Profil
d’Humidité Intertropicale par Radiométrie), ScaRaB, a wide band instrument for the
measurement of radiative fluxes at the top of the atmosphere (Scanner for Radiation
Budget), and ROSA, a GPS receiver (Radio Occultation Sounder for the Atmosphere).
In this study, we focus on the combined use of SAPHIR and MADRAS observations,
whose characteristics are listed in Table 1 together with their in-flight radiometric sensi-
tivities as estimated by the CNES space agency (Karouche et al., 2012). SAPHIR is the
main instrument for RH profiling with 6 channels in the 183.31 GHz strong absorption
line of water vapor. The first channel is close to the center of the line and is aimed at
reaching the upper levels of the troposphere while the sixth channel is located on the
wings of the absorption line and provides a deeper sounding of the atmosphere. In the
context of the RH estimations, the measurements provided by MADRAS (dedicated
to rainfall estimation) will obviously better constraint the problem since 23.8 GHz mea-
surements are generally used for the determination of the total water vapor content
(Schaerer and Wilheit, 1979) and the two 157 GHz channels can help removing the
surface contribution to the upwelling radiation (English et al., 1994). However, due to a
mechanical anomaly affecting the rotating mechanism of MADRAS, its measurements
are considered invalid since 26 January 2013 and only SAPHIR observations are avail-
able to the scientific community after this date (joint CNES and ISRO communication
done on 24 September 2013).
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2.2 Data description

High quality RH soundings sampling the tropical troposphere, reasonably collocated in
space and time with Megha-Tropiques observations are quite scarce, yiedling to use
a synthetic training set to overcome the problem. This set is made of thermodynam-
ical profiles representative of the 30° N-30° S atmosphere and of the associated BTs
simulated using a radiative transfer model. This method embeds both the physical and
statistical characteristics of the inverse problem in the training phase.

2.2.1 The radiosounding profiles

The RH profiles come from the operational radiosounding archive used in the ECMWF
reanalyses assimilation process, which have been quality checked and reformatted
by the Laboratoire de Métérologie Dynamique (namely the ARSA database, http:/
ara.abct.Imd.polytechnique.fr/index.php?page=arsa). The main aspects of the applied
treatments are (i) the discarding of incomplete profiles both in temperature (threshold of
30 hPa) and humidity (threshold of 350 hPa), (ii) a vertical extrapolation of the profiles
up to 2.1078 hPa, considered as the top of the atmosphere, using climatologies and
(i) a projection on a 43-level fixed pressure grid with a surface level at 1013.25 hPa.
Here the profiles are vertically restricted to the troposphere, from the surface up to
85 hPa, thus yielding to have 22-levels profiles, and an additional physical constraint
on the RH has been applied in order to remove the extremely dry profiles (RH < 2 %)
and the super-saturated layers encountered in the upper troposphere (RH > 150 %,
e.g. Gierens et al., 1999; Read et al., 2007, 2001, the RH being defined with respect to
ice or liquid water depending on pressure and temperature). In the following the term
RH will refer to the relative humidity computed with respect to the liquid phase of water
only.

Currently, only clear-sky conditions are considered. Indeed, as underlined by Brog-
niez et al. (2013), the representation of the cloudy conditions in a training database still
presents a limit because reference profiles of cloudy situations with known uncertainties
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are difficult to gather which introduces additional errors in the methodology. Moreover,
while a similar effort (not shown) has been done over land, we restrict the present anal-
ysis to oceanic situations in order to put aside the consideration of the strongly variable
continental emissivity (Karbou et al., 2005). This particular case and its treatment are
mentioned in the last section. The base is finally made of 1631 thermodynamic profiles
that cover the tropical oceans (30° S—30° N) over the 1990-2007 period.

2.2.2 Definition of the considered atmospheric layers

Given a set of BTs, the expected accuracy in the estimated RH will obvioulsy highly
depend on the atmospheric area under consideration. Therefore for a specific pres-
sure level, the relevant inputs will not be necessarily the same than for another level.
One can indeed expect that the estimation of RH of mid-tropospheric levels will not
significantly benefit from MADRAS measurements, while these should be an asset for
a surface layer. This is why layer-dependent models are considered here. The RH pro-
files were analyzed to group the 22 original levels in relatively homogeneous layers.
First, the analysis of the variance-covariance matrix determined groups of correlated
successive levels. Then, self-organized maps (SOM) (Kohonen, 1982, 2001) are used
to visualize the 22-D original profiles as 22 2-D images (not shown). This visual analy-
sis allows to group the original levels with similar patterns taking into account linear and
nonlinear relationships. This visualization is also used to analyse the patterns of the er-
rors of estimation. The analysis of these SOM yields to combine the original pressure
levels with a a semi-empirical iterative method in order to have layers with minimal vari-
ance of RH and minimal mean-median distance. From this reduction, the training RH
dataset is composed of 7-layer profiles (grossly: 85-100, 130-250, 275-380, 425—650,
725-850, 900-955 and 1013 hPa).

Figure 1 shows the result of this vertical reduction using box-and-whiskers diagrams
in order to present the main characteristics of the atmospheric layers (median, first and
third quartiles, upper and lower limits of the distribution). The superimposed weighting
functions of SAPHIR are drawn to recall that this radiometer is designed to focus on the
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free troposphere (layers 3 to 6), with very few informations near the tropopause and in
the boundary layer.

2.2.3 Synthetic Megha-Tropiques observations

The RTTOV fast radiative transfer model, version 9.3 (Radiative Transfer for Televi-
sion and Infrared Observation Satellite Operational Vertical Sounder, Matricardi et al.,
2004), is used to simulate SAPHIR and MADRAS BTs from the thermodynamic profiles
described above. Because the surface emissivity contributes strongly to the upwelling
radiation in the microwave domain (Ulaby et al., 1981; Bennartz and Bauer, 2003)
its implementation is important for realistic radiative transfer simulations. Indeed, the
surface emissivity affects the observed microwave upwelling radiation in the 2 lower
channels of SAPHIR (183.31 £ 6.8 and +11 GHz, with a difference of BT of up to 5K for
some cases) and of all the 9 channels of MADRAS. In RTTOV-9.3, the oceanic surface
emissivities are computed with the FASTEM-3 surface model (Fast Emissivity Model,
Deblonde and English, 2001) using the 10 m wind speed. Here we use the wind ex-
tracted from a 18 year climatology from the ECMWF ReAnalysis (ERA) Interim model
covering the same period as the thermodynamic profiles (1990—-2008). Over continen-
tal surfaces, the emissivity atlas of Prigent et al. (2006), elaborated from 10 years of
Special Sensor Microwave Imager (SSM/I) observations, is prefered over the inter-
nal module of RTTOV. Finally SAPHIR BTs are simulated only in the nadir geometry
whereas the simulations of MADRAS BTs are performed at the radiometer’s constant
viewing angle of 53.5°.

The simulations also make use of the instrumental noise to have a realistic base of
work. The radiometric sensitivity is often considered as the intrumental noise since it
gives the minimum variation in the measured upwelling radiation that a specific channel
can detect (noise-equivalent AT: NEAT, in K). This noise may be considered as addi-
tive and modeled as realisations of a random variable following a normal distribution
with a zero mean and a standard deviation equal to the NEAT value for each channel.
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The simulated datasets are re-built by aggregating 10 noisy samples for each original
sample.

With the stop of MADRAS after almost 15 months of measurements, two configu-
rations of a RH retrieval method have been considered: a SAPHIR-only scheme and
a SAPHIR-MADRAS scheme, the latter being associated to a selection of the optimal
channels. For the former configurations all SAPHIR channels are used. For the latter
configuration, a selection of the BTs is performed because the BTs that will be signifi-
cantly relevant in the RH retrieval at a given layer will not necessarily be the same set
when considering another layer. For this purpose the optimal subset of channels is de-
termined thanks to the Gram-Schmidt orthogonalization (GSO) procedure (see Chen
et al., 1989). Here, since the size of the whole input set (the BTs) does not exceed
15 elements, the GSO procedure is implemented according to a wrapper approach.
This is performed for each atmospheric layer.

3 Description of the non-linear models
3.1 General aspects

To ensure the consistency between the mathematical descriptions of the three statisti-
cal models, the notation will be as follows: the estimation of the RH' at a specific layer
i (/ €[1;7]), namely the output, is performed from a vector of BTs, the inputs, which

is a p dimensional covariate noted BT (p € [1;15]). Thus, for each layer / the training
N
dataset is made of (p + 1)-tuples {BTk, RHZ} , Where the cardinality of the set N is

16310 (1631 profiles x 10 noisy reproductions). ,

The GAM, MLP and LS-SVM models learn the relationship between BT and RH’
of a layer / by building a model directly from the data at hand without other a priori
information. For one particular channel, the nonlinearity between the measured BTs
and the RH' is more or less strong (Soden and Bretherton, 1993; Stephens et al.,
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1996; Brogniez and Pierrehumbert, 2006; Brogniez et al., 2013). This is illustrated
on Fig. 2 for the BT of the 183.31 + 1.1 GHz channel of SAPHIR and the RH® and
RH4, extracted from the synthetic base. Hence the approach choosen is to adjust and
optimize the BT-to-RH’ relationships separately for each of the 7 layers.

The dataset described in Sect. 2 is randomly divided into two subsets: a subset of
2/3 of the N samples (~ 11000 samples) is dedicated to the training and to the val-
idation of the models while the remaining 1/3 forms the test set (~ 5000 samples).
Some parameters of the three modeling methods have to be adjusted and the selected
models are those with the best generalization capabilities. These parameters are tuned
to minimize the validation error which is an empirical estimation of the generalization
error. Thus the selection of the models consists in the involvement of an efficient vali-
dation method. Various validation techniques exist in the literature (Hastie et al., 2009).
The most popular techniques are probably the cross validation method and the leave-
one-out (LOO) technique, which are implemented according to the modeling method.
Note that since the three modeling methods will be compared, we focus on efficient
validation techniques and pay less attention to the computational burden they involve.

The input vector BT is normalized (zero mean and unit variance). While such normal-
ization does not affect the estimation provided by GAM (but only the relative weight of
each predictor in the fit), the normalized input dataset is the same for all models in order
to simplify the process. A Principal Component Analysis (PCA) is also implemented on
the BT to feed each statistical model with uncorrelated and linearly independent data.
Indeed, the weighting functions of the 6 channels of SAPHIR slightly overlap each other
to cover the entire absorption line. As a result, while each channel receives mainly the
radiation emitted by a given layer of the atmosphere, contributions from layers above
and below are not negligible, yielding to some interdependencies between the chan-
nels. Finally, in order to account for the known exponential relationship between the BT
in the 183.31 GHz line and the atmospheric RH (for instance at 183.31 + 1.0 GHz, see
Spencer and Braswell, 1997 and Buehler and John, 2005), the use of the exponential
function is also considered, which has also the advantage to ensure the retrieval of
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positive values. The effect of the PCA and of the exponential function have been eval-
uated for each statistical model for each layer /. The configuration with the smallest
validation error was selected.

3.2 Generalized Additive Model

GAMs have recently started to be used in environmental studies as a surrogate to tradi-
tional MLP thanks to their ability to model nonlinear behaviors while providing a control
of the physical content of the statistical relationships (Wood, 2006). Therefore, among
the recent works, one can cite the use of GAM to perform a statistical downscaling of
precipitations (e.g. Beckmann and Buishand, 2002; Vrac et al., 2007), to analyze time
series (Davis et al., 1998; Mestre and Hallegatte, 2009; Underwood, 2009) and more
recently to solve inverse problems (e.g. Brogniez et al., 2013). A reasonable number of
papers provide in-depth descriptions of the GAM algorithm, and one can refer to Wood
(2006) for a detailed presentation of the background and the implementation issues of
such model. We provide here only briefly its main characteristics. A GAM infers the
possible nonlinear effect of a set of p predictors (BT, ...,BT),) to the expectation of the

predictant RH'. Itis expressed as followed:
g(E(ﬁI\-|/|BT)) =e + f1(BTy) + H(BTy) + ... +1,(BT,), (1)

where g is a linearizing link function between the expectation of RH' given BT and the
additive predictors f;(BT ), which are smooth and generally non-parametric functions of

the covariates BTy, .. ., BTp. Finally e’ is the residual that follows a normal distribution.
Here, penalized regression cubic splines are used as the smoothing functions and
are estimated independently of the other covariates using the “back-fitting algorithm”
(Hastie and Tibshirani, 1990). Part of the model-fitting process is to determine the
appropriate degree of smoothness, which is done through a penalty term in the model
likelihood, controlled by a smoothing parameter 1. 1 determines the trade off between
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the goodness of fit (1 — 0, gives a wiggly function) of the model and its smoothness
(A — o0).

Part of the GAM fitting process is to choose the appropriate degree of smoothness
of the regression splines. The smoothing parameter 1 is adjusted to minimize the gen-
eralized cross validation score (GCV). One can refer to Wood (2004, 2006) for more
details on the training algorithm.

3.3 Multi-layer perceptron algorithm

The MLP (Rumelhart et al., 1986) belongs to the family of artificial neural networks
(Haykin, 1994). MLPs are attractive candidates thanks to various well known proper-
ties. Indeed a MLP is a universal function approximator and thus can represent any
arbitrary functions (Bishop, 1995) so they are widely used for the approximation of
non-linear transfer functions. Moreover MLP have been shown to be able to deal with
noisy data. In our case, defining an architecture consists of: (i) selecting the relevant
input variables and (ii) setting the number of neurons in the hidden layer. A fixed archi-
tecture defines a function family F(-) in which we seek the best function allowing us to
invert BTs. It is possible to express this MLP model in a mathematical way as:

RH' = F(W,BT), @

where F(-) and W correspond respectively to the transfer function and the synaptic
weights matrix of the model. The main critical point with the MLP method is the way
to choose the optimal architecture and to adjust the corresponding MLP internal pa-
rameters (the weights). These parameters are determined so as to minimize the mean
quadratic error computed on the training dataset. As our goal is to create a nonlinear
model with good generalization capabilities, the problem of overfitting must be con-
sidered. To avoid overfitting, the LOO validation method is implemented to check the
possible overfitting and to optimally select model parameters such as to minimize the
validation error.
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3.4 Least Square — Support Vector Machine

SVM are kernel methods (Scholkopf and Smola, 2002). They are attractive candidates
for nonlinear modeling from data. Thanks to various desirable properties, they have
the ability to build models with high generalization capabilities by avoiding overfitting
and controlling model complexity. A Least Square formulation of SVM called LS-SVM
were proposed to make the SVM approach for modeling more generally applicable,
such as for dynamic modeling (Qu, 2009) or for implementing sophisticated validation
techniques (Cawley and Talbot, 2007). The SVM technique and its derived formulations
have found applications in atmospheric sciences, such as in statistical downscaling of
precipitation (Tripathi et al., 2006; Anandhi et al., 2008), in regression problems (Sun
et al., 2005) or in classification from remote sensing measurements (Lee et al., 2004).

The LS-SVM training procedure consists in estimating the set of adjustable parame-
ters w and b by the minimization of the cost function:

N
1 7 1 2
Jw.e)=zww+C Zek (3)

with e, the prediction error for example k and N the size of the training set. C is an
hyperparameter that controls the tradeoff between the prediction error and the regular-
ization. This optimization problem can be cast into a dual form with unknown parame-
ters a@ and b, a being the vector of the Lagrange multipliers. Thus, the parameters can
be computed by resolving a set of (N + 1) linear equations.

Since LS-SVM models are linear in their parameters models, the solution of the
training phase is unique and can be computed straightforwardly using the set of (N +1)
linear equations as stated above. Here the validation error is estimated using the virtual
LOO (or VLOO) method. This method, first proposed for linear models (Belsley et al.,
1980) and later extended to nonlinear models (Laurent and Cook, 1993), allows to esti-
mate the validation error by performing one training involving the whole available data.
This estimation is exact when dealing with linear-in-their-parameters models, such as
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LS-SVM models, while it remains an approximation for models which are nonlinear
with respect to their parameters. More recently, a framework described by Cawley and
Talbot (2007) implements the VLOO method for LS-SVM models. This method gives a
fast and exact estimation of the validation error, which is a great benefit for reducing
the computational burden involved by other validation techniques such as the cross
validation method (Hastie et al., 2009).

4 Performance over the synthetic dataset

The retrievals of RH profiles provided by GAM, MLP and LS-SVM are compared for the
two schemes. The following criteria are computed over the test set (~ 5000 samples)
for each atmospheric layer /: the mean error (refered to as the “bias”), the standard
deviation of the error (SD) and the Pearson’s correlation coefficient (R) between the
estimated RH and the reference RH, using the variance-covariance matrix (cov):

N N
, 1 o , .
SD' = | v 2 (RH, — RHy)? bias’ = > (RH] -~ RH)
k=1 k=1

cov(RH’, ﬁl\-|/)

R =

_ _ @
\/SDZ(RH’)-SD%FEH’)

Moreover the notation %RH will be used to make easier the discussion between
relative units (in %) and RH units (in %RH). The size of the test set allows to consider
that all the results are significant at the 99.9 % level of confidence.

4.1 On the optimization of the models

As mentioned in Sect. 2.2.3, it is important to underline that the optimized models
are different for each atmospheric layer. Indeed, in the case of the SAPHIR-MADRAS
8997

| J1adeq uoissnosiq | Jaded uoissnosiq

Jaded uoissnosiq | Jaded uoissnosiq

AMTD
7, 8983-9023, 2014

Relative humidity
profiling with
Megha-tropiques

R. G. Sivira et al.

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/8983/2014/amtd-7-8983-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/8983/2014/amtd-7-8983-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

scheme a selection of the relevant channels is performed using the GSO procedure.
The GSO procedure helps to reduce the complexity of the algorithms by reducing the
number of inputs of the available set of data. It is implemented in the present case with
a reasonable threshold of 10 % on the variation of the variance. This means that the
inputs that enhance the error variance less than 10 % are considered as irrelevant. Of
course the same inputs could be used for the different models with small deterioration.
For example, for the layer 4 (425—650 hPa), a sensitivity analysis has shown that, when
using GAM, the best set of inputs is {S3, S4, S5, S6, M3, M4} and if M9 is added, the
SD decreases from 4 to 3.8 %RH. In fact, when the RH retrieval is based on the MLP
approach, the SD increases from 2.8 to 3 %RH. In these two cases the difference is
relatively small. In fact, an in-depth study of the relevancy of the channels reveals that
the selected inputs are only weakly dependent on the retrieval model but are highly
dependent on the atmospheric layer.

For the SAPHIR-only scheme, all channels are used. An impact study of the pre-
processing of the data on the accuracy of RH retrieval shows that, whatever the atmo-
spheric layer or algorithm considered, the improvement obtained with PCA is negligible
(< 3% of the error variance). The use of uncorrelated inputs is thus not necessarily
required for the considered models. Finally, the linearization of the problem with the
exponential function is beneficial only for the MLP: in this case it leads to a decrease
of the error variance of about 50 %, while no significant improvement is observed for
LS-SVM and GAM (< 3 % of the error variance).

4.2 Performance of GAM against the two other models

From here on, noise-free BTs are considered in order to only assess the statistical

approaches. The radiometric noise of the two instruments are implemented for the

evaluation of the retrieval of RH with RH values considered as reference values. Vertical

profiles of mean biases, SD and R between the observed RH and the estimated RH

are presented on Fig. 3. At first sight, the analysis of one layer at a time clearly shows

that the overall quality of the retrieval is layer-dependent, meaning that it is strongly
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constrained by the physical limits of the inverse problem. Thus, the layers covering the
free troposphere (layers 2 to 6) are quite well modeled, with small SD reaching values
between 2.6 and 7.8 %RH, and are characterized by a small scatter, with /£ lying in
the 0.85-0.97 interval. The combined use of SAPHIR and MADRAS BTs is enough
to explain more than 70 % of the variability of the RH at these layers. The retrieval of
the RH of the extreme layers (layer 1 for the top of the atmosphere, layer 7 for the
surface) seems more delicate and is clearly limited by the inputs at hand: as illustrated
on Fig. 1, the 6 channels of SAPHIR observe the emitted radiation grossly between 150
and 850 hPa, and although MADRAS brings some additional relevant measurements,
other information such as the surface emissivity might contribute significantly to better
constraint the retrieval near the surface.

The LS-SVM technique provides overall the best results, with the highest correlation
coefficients and the lowest variance for 5 layers over the 7 considered in this study.
In fact, theoretically, these 3 learning methods are equivalent but the conditions of
their implementation are somewhat different. First, since the LS-SVM are linear-in-
their-parameters models, an exact validation method was implemented. The resulting
procedure of selection of the relevant inputs is quite efficient. In addition, MLP models
are nonlinear with respect to the adjusted parameters, and their training amounts to a
nonlinear optimization. Several trainings with different initializations must be performed
with no guarantee to achieve the best generalization capability given a network archi-
tecture. From this point of view, the LS-SVM approach is thus more successful. Finally,
concerning the GAM approach, the smoothing splines used guarantee a nonlinear be-
havior, continuity and smoothness which are important characteristics in a learning
algorithm. Another convenient characteristic for splines is that they are monotonic: the
backpropagation algorithm can estimate parametric and non-parametric components
of the model simultaneously.

The 3 methods perform equivalently: R and SD are very close to each other. The
MLP approach provides slightly more biased estimations of the RH throughout the tro-
posphere while the GAM and LS-SVM methods are centered. This distinction is more
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pronounced for the surface layer with retrievals of RH characterized with a 6.9 %RH
bias when using the MLP whereas the bias is 0.06—0.07 %RH with GAM and LS-SVM.
A sample of profiles is presented on Fig. 4, with the observed relative humidity and the
3 estimations using the 3 approaches. As discussed above the top layer is the less well
retrieved from the set of BTs, whatever the approach, while the mid-tropospheric layers
(3 to 6, i.e. 350 down to 950 hPa) are pretty well estimated.

The errors obtained from the GAM estimation are projected on the 10 x 10 Koho-
nen maps that were obtained during the stage of clustering of the atmospheric layers
(Sect. 2.2.2) and give a structural view of the errors. The projections are shown on
Fig. 5. This allows to analyze the retrieval errors with respect to the clusters of RH re-
vealed by the maps, and allow for a deeper analysis related to meteorological situations
than the global biases and SD. A pattern of a large bias (~ 44 %RH) clearly stands out
of the map of layer 1 (near tropopause), and this bias is associated to the neurons re-
lated to a moist structure at this top layer. This suggests that GAM has difficulties when
dealing with a moist upper troposphere, that could be due to an under-representation
in the training set. A similar statement can be made for the 6th layer, with the neurons
associated to the largest bias in the upper left corner (negative in this case) being this
associated to the more dry neurons of this layer. There is no clear pattern standing out
of the remaining layers, even for the surface layer, meaning that the errors are uniformly
distributed.

4.3 Performance for the two instrumental schemes

In the following, noisy BTs are used in order to discuss the results over the realis-
tic instrumental configurations. Two GAMs are optimized for each atmospheric layer,
one for each instrumental scheme: a SAPHIR-MADRAS scheme and a SAPHIR-only
scheme. The evaluations over the validation set are summarized on Table 2, with bi-
ases, SD and R. An illustration of the scatter is given with Fig. 6 for two atmospheric
layers: layer 4 (~ 425—650 hPa) and layer 6 (~ 900-955 hPa). These statistics allow for
a discussion on the influence of MADRAS BTs on the quality of retrieval of the RH.
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MADRAS channels are an asset for the estimation of the RH profile since their use
reduce the scatter (improvement of R and reduction of SD). The pattern of scatter fol-
lows the distribution of the weighting functions of SAPHIR: the best estimations are
obtained for the mid-tropospheric layers (R = 0.83 to 0.97, over layers 2 to 5) where
the fonctions strongly overlap, and the quality of the estimations decrease towards the
edges. One can also note that the retrieval model of the 7th layer use all 15 BTs of the
microwave payload but this does not allow for a robust estimation of the RH (R = 0.54,
corresponding to a R? value of 0.29). An estimation of the RH profile down to 955 hPa
seems reasonable if no other constraint is added to the model.

When the SAPHIR-only scheme is used, such statement can be extended to the
top layer (R = 0.57, R? = 0.32), thus limiting the estimation of RH from layer 2 to layer
6. For these atmospheric layers, the biases are small and range between 2.69 and
-1.583%RH. The impact of MADRAS BTs on the retrieval of RH is important to keep
in mind when specific analysis of temporal and spatial variations of the RH field will be
performed over the MT lifetime.

5 Application to Megha-Tropiques measurements
5.1 Some considerations on the Megha-tropiques observations

As other similar radiometer with varying viewing geometry, SAPHIR observations are
subject to the so-called “limb effect”, described for instance in Goldberg et al. (2000).
This means that, at SAPHIR frequencies, the pixels on the edge of the swath have
BTs artificially lower than the pixels located in the center, the atmosphere of the former
having a larger optical depth than the latter. For the same thermodynamical profile,
this limb effect yields to shift upward the sounding altitude of the outermost pixels.
Of course this needs to be taken into account in any retrieval processes (e.g. Karbou
et al., 2005; Buehler et al., 2004). Possibilities are (i) to have one dedicated model per
viewing angle (as done by Buehler and John, 2005), (ii) to include explicitely the viewing
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angle in the retrieval method traditionnally done in iterative schemes (see Soden and
Bretherton, 1993; Liu and Weng, 2005), or (iii) to apply a correction that brings all
the viewing angles to an equivalent nadir position, before the retrieval itself (Brogniez
and Pierrehumbert, 2006). Here, the GAMs have been optimized using the nominal
viewing angle of MADRAS (53.5°) and limited to the nadir geometry of SAPHIR. In fact,
the observed relationship between the BT and the viewing angle can be accurately
approximated by a multi-variate linear function, as noticed by Goldberg et al. (2000)
and Buehler et al. (2004). Knowing the means and variances of this relationship for
each angle is enough to assimilate this function in the normalization method which is
based on standard scores. These have been computed every 2° from nadir to 52° (the
maximum viewing angle of SAPHIR is 50.7°) using the training database.

5.2 Comparison to radiosoundings measurements:
the CINDY/DYNAMO/AMIE dataset

Observed RH profiles gathered from the CINDY/DYNAMO/AMIE international field ex-
periment are used to evaluate the estimated RH profiles. With the 1st orbit of Megha-
Tropiques executed on 13 October 2011, this large scale campaign is ideal to perform
such exercise. It took place over the period October 2011-March 2012 in the Indian
Ocean and was dedicated to better understand the processes involved in the initiation
of the Madden-Julian Oscillation and to improve its simulation and prediction (Cooper-
ative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011/Dynamics
of the Madden—Julian Oscillation/ARM Madden-Julian Oscillation Investigation Experi-
ment, hereafter C/D/A). Measurements related to the atmospheric and oceanic states
have been collected from radars, microphysics probes, a mooring network and an up-
per air sounding network. One can refer to Clain et al. (2014) for a discussion on the
quality of the RH profiles and their use in the context of the evaluation of SAPHIR
measurements. Here we focus on the oceanic sites and on the period October to De-
cember 2011 to evaluate the RH estimations: over that period, MADRAS performed
optimally. Clain et al. (2014) found a systematic bias in the BT space that increases
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with the distance of the observing channel from the central frequency. Such biases
are eliminated by the normalization procedure of the retrieval scheme. Overall, among
the 10000 high-resolution soundings collected during the campaign (Ciesielski et al.,
2014), only about 50 profiles match to our collocation criteria: a At < £45min and a
Ax < 50km.

The restriction of the training of the GAMs to clear-sky conditions requires a cloud
mask. Therefore, cloud-free cases are detected from the radiosounding record itself
(RH limited to 100 %RH) and are associated to the Hong et al. (2005) method to de-
tect the precipitating scene (the convective overshootings, a threshold method based
on the depression induced by the scattering of the microwave radiation by the pre-
cipitating particles) from the SAPHIR observations. One point of concern here is the
availability of the Megha-Tropiques archive over this period which is not 100 %, with a
lower availability for MADRAS. The completion of this archive until the date of launch
is still a major point of concern for the two space agencies CNES and ISRO, in order
to maximize the size of the MADRAS record.

For each of the 7 layers, the observed RH is defined by the mean of the measure-
ments that fit into the pressure boundaries, assuming that this mean will be represen-
tative of the layer. This assumption is very simple, especially since the tropospheric
RH is characterized by its strong vertical gradients induced by complex transport and
thermodynamic processes (e.g. Pierrehumbert et al., 2007; Sherwood et al., 2010).
However, a comparison (not shown) between such smooth mean and a discrete mean
as defined from the training profiles show no systematic differences. Figure 7 shows
the comparison between the observed and estimated RH using profiles of R and bi-
ases, for the two instrumental configurations. Figure 7 summarizes the results. Since
the sample size is quite small (N — 2 = 48 degrees of freedom), a Student ¢ test (Stu-
dent, 1908) is performed to test the independance of the samples and assuming that
they follow Gaussian distributions. The 99.9 % level of confidence is indicated on Fig. 7
and ¢t values below this level are not given. Box-and-whiskers diagrams are used to
represent the distributions of the differences and show the similarity/differences of the
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estimations when using both SAPHIR and MADRAS or only SAPHIR. As expected from
the synthetic data analysis, the mid-tropospheric layers 2 to 5 are very well retrieved,
with quite good correlations (0.6-0.92) when SAPHIR and MADRAS are combined.
Additional analysis show that the SD of the differences reach a maximum of 10 %RH
(layer 4). The removal of MADRAS clearly affect the estimation of RH for most layers,
while for layer 3 there is no significant effect. This is expected from the distribution of
the weighting functions that present a large overlap around 300 hPa (see also Fig. 1).

5.3 Large scale structures

Figure 8 shows an example of RH estimation using the SAPHIR-only scheme, for the
4th atmospheric layer (425—650 hPa) observed on 14 November 2011 (observing time
17:00-18:55TU). The RH of the ERA-Interim re-analysis dataset of the same date
(at 18:00 TU). The large-scale patterns are clearly identical in the two maps, such as
the large dry area over West Africa, the moist and thin filamentary structure North-
West of it, or the moist area over Central America. The amplitude of the two fields
present some discrepancies, but is is important to focus specifically on the cloud-free
zones. The high and mid-level clouds in ERA-Interim are shaded in black while the low
clouds are delimited by the grey contour. Over these areas the amplitudes are similar,
with minima of RH around 10 %RH. No note that cloud-mask is yet available for the
Megha-Tropiques observations and a current effort is on the use of the cloud mask and
classification performed by the SAFNWC (Satellite Application Facility of EUMETSA)
for the belt of geostationnary satellites, adjusted to Megha-Tropiques.

6 Conclusions

Microwave observations from the SAPHIR and MADRAS microwave radiometers of
the Megha-Tropiques satellite are used to retrieve RH profiles. For this purpose, opti-
mized GAMs were trained for each atmospheric layer over a realistic set of synthetic
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observations. This set is composed of 18 years of radiosounding profiles covering the
tropical belt (£30°) used in combination with a radiative transfer model (RTTOV9.3) to
get the associated synthetic BTs. Our approach consists in using only the satellite mea-
surements as inputs of the retrieval method. The training phase of the model considers
implicitly the role of temperature, humidity and surface characteristics of the tropical
atmosphere.

To assess the performance of GAM, MLP and LS-SVM were also trained and opti-
mized using sophisticated validation methods. The novelty lies in the implementation
of the LS-SVM modeling technique since, to our knowledge, it has never been applied
for remote sensing retrievals whereas it solves the major problem of local minima, a
common pitfall when using neural networks. While the 3 modeling methods come from
different theoritical backgrounds, they achieve roughly the same performance. More-
over the LS-SVM approach provides roughly better results. We assume that these
improvements come from their built-in regularization mechanisms, but they are asso-
ciated to a heavy computational burden that compromises their implementation when
considering large datasets (such as satellite measurements).

The intercomparison of the three models points towards the definition of the prob-
lem given the inputs at hand. The combination of SAPHIR and MADRAS or the use
of SAPHIR-only makes it possible to perform a robust estimation of RH in the 150—
950 hPa part of the troposphere with a small error (absolute maximum bias of 1.53 %)
and scatter (min correlation of 0.49). Near the tropopause and at the surface, the re-
trieval capacity is clearly constrained by the information content brought by the inputs,
whatever the configuration. Of course, the use of a retrieval technique (e.g. neural
network or 1d-variational) using prior physical information should further improve the
estimation: for instance, the surface layer should clearly benefit from prior knowledge
of the surface temperature and total water vapor content. In fact, a comparison with
existing works based on methods combining physical constraints with statistical tools
(Kuo et al., 1994; Cabrera-Mercadier and Staelin, 1995; Rieder and Kirchengast, 1999;
Liu and Weng, 2005; Aires et al., 2013) applied to on similar radiometers with less
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channels in the 183.31 GHz line, such as AMSU-B or MHS, shows that the current
approach gives similar performance (root mean square errors of about 10 % in the
mid-troposphere). A 1D-var technique exploring SAPHIR data should further improve
the estimation of RH.

Despite the focus of the present study on oceanic and cloud-free conditions, this
approach has been extended to continental cases, where the influence of the sur-
face emissivity on the measured brightness temperature at the top of the atmosphere
needs to be taken into account. For this extension, the problem is constrained with
the emissivity atlas of Prigent et al. (2006) as input of the radiative transfer model for
the simulation of the BTs. While SAPHIR channels are less affected, in mean, by the
surface emissivity, the consideration of realistic emissivity is an asset for the definition
of a realistic training set. Comparisons (not shown) to in situ measurements from a
continental site in Burkina Faso (a dedicated summer 2012 field campaign) reveals
similar performance in the mid-tropospheric layers, the surface layers being slightly
better estimated.

Following this work, our current efforts focus on the estimation of the conditional error
associated to the retrieval itself. Indeed, because the widths and altitudes of the weight-
ing functions of SAPHIR are strongly dependent on the thermodynamical state of the
atmosphere (the drier the atmosphere, the wider the layer; the maximum of sensitivity
shifting from the upper troposphere towards the mid-troposphere), it is clearly expected
that the robustness of the RH estimation will be conditioned by the state of the atmo-
sphere. The aim will be to provide the probability density function of the relative humid-
ity on given BTs (a given state of the atmosphere) and thus address the issue of non-
Gaussian distribution of the relative humidity at a given height. The knowledge of such
information fits into the current work done within the Global Energy and Water Cycle
Experiment (GEWEX) Water Vapor Assessment (G-VAP: http://www.gewex-vap.org) to
better characterize the observational records, together with their uncertainties.

Acknowledgements. The authors thanks the LMD/ABC(t)/ARA group for producing and making
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Table 1. Observational characteristics of SAPHIR and MADRAS. 6, is the viewing zenith an-
gle. Hand V correspond respectively to the horizontal and vertical polarizations of the observed
electromagnetic field. 7, corresponds to SAPHIR central frequency at 183.31 GHz. The instru-
mental noises obtained from in-orbit performance are also indicated (from Karouche et al.,

2012).

instrument central frequency bandwidth resolution (km) In-Orbit Instrumental
(name) (GHz) (MHz) (along x across track) Noise (NEAT (K))
S fo£0.2 +200 1.44

SAPHIR S2 fox1.1 +350 from (10 x 10) km? at nadir  1.05

cross-track S3 fo+£2.8 +500 to (14.5 x 22.7) km? 0.91

(Bpen =£50.7°) S4 fox4.2 +700 on the edge of the swath 0.77
S5 fo+£6.6 +1200 0.63
S6 fo£11.0 +2000 0.54
M1&M2 18.7(H&V) +100 0.48 & 0.56

MADRAS M3 23.8 (V) +200 (67.25 x 40) km? 0.49

conical scan M4 & M5 36.5(H&V) +500 0.40 & 0.40

(6pen = 53.5°%) M6 & M7 89.0 (H& V) +1350 (16.81 x 10) km? 0.55 & 0.53
M8 &M9 157.0(H&V) 1350 (10.1 x 6) km? 1.59 & 1.49
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Table 2. Mean bias (in %RH), standard deviation (SD, in %RH) and correlation coefficient (R)
for the 7 layers, and defined between the observed RH and the estimated RH. The estimated
RH is obtained using the GAM approach from the two configurations: SAPHIR-MADRAS joint
measurements and SAPHIR-only measurements. For the SAPHIR-MADRAS configuration, the

AMTD
7, 8983-9023, 2014

Jaded uoissnosiq
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indicated in Table 1. Relative humidity
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bias (%) S1,S2, 83 -0.01 -0.09 S
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SD (%) M1, M3, M4, M5, M6,  6.72 11.65
R M7, M8, M9 0.91 0.70

bias (%) S1, S2, S3,S4,S5,S6 0.36 -0.02
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Figure 1. Relative humidity profiles from the database at the initial 22-level resolution (a) and at
the reduced 7-layer resolution after clustering (b). For each layer, the box-and-whiskers diagram
indicates the median (the central vertical line), and the lower and upper quartiles (left and right
edges of the box). The whiskers indicate the lower and upper limits of the distribution within 1.5
times the interquartile range from the lower and upper quartiles, respectively. The 6 weighting
functions of SAPHIR, computed for a standard tropical profile observed at nadir viewing angle
using the RTTOV radiative code, are also represented.
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i 0.552 % i 141 U -0.194
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Figure 5. RH and the associated errors (both in %RH) projected on the 10 x 10 self-organizing
maps obtained from the step of clustering of the original RH profiles (see Sect. 2.2.2): the upper
row shows the mean RH for the 7 layers, and the lower row shows the errors of estimation using
GAMSs. Note that the color scales are adjusted to each map.
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Figure 6. Scatter-plots of the observed RH versus the estimated RH (in %RH) for layer 4 (top & Printer-friendly Version
row) and layer 6 (bottom row). The estimations are done using GAMs trained from SAPHIR-only g- : o Di :
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The dashed line is y = x line and the solid line represents the linear regression. The correlation %P
coefficient (R) and the standard deviation of the error (SD) are provided within each panel. @
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Figure 7. Vertical profiles of R (left) and differences (right, in %RH) for the SAPHIR-only (red)
and the SAPHIR-MADRAS (blue) retrievals, computed over the subset of 50 RS from the
CINDY/DYNAMO/AMIE campaign. For the profiles of the differences between the observed
and estimated RH, the box and whiskers diagram indicates for each layer the median (the
central vertical line) and the lower and upper quartiles (left and right edges of the box). The
whiskers indicate the lower and upper limits of the distribution within 1.5 times the interquartile
range from the lower and upper quartiles, respectively.
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Figure 8. Relative humidity (in %) of the layer 400-600hPa as estimated from Megha-
Tropiques/SAPHIR measurements (top) and by the ERA-Interim reanalysis (bottom) for
14 November 2011. For the map of ERA-Interim RH, the black contour delineates the clear
sky and the grey contour delineates the areas with low-level clouds, while the dotted areas are
covered with high or mid-level clouds.
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